• MSN Innovation in partnership with Nissan
27/12/2013 12:30 | By Mark Hattersley, contributor, MSN Innovation

Hidden secret: the incredible South Pole space telescope

This innovative Antarctic telescope examines the far reaches of space from deep beneath the South Pole


The planetary system (© Rex Features)

The IceCube is a telescope like no other on Earth. This giant structure buried deep beneath the Antarctic ice has done what no other telescope or space probe could, it has discovered the first neutrinos from outside our solar system.

IceCube’s discovery has created a whole new frontier for astronomists. One where scientists don’t just observe giant objects from distant galaxies, but the tiny particles that form them. This discovery may help scientists explain supernovae, black holes, pulsars, active galactic nuclei and other extreme extragalactic phenomena.

The IceCube Laboratory at the Amundsen-Scott South Pole Station, in Antarctica (© Sven Lidstrom)

The IceCube Laboratory at the Amundsen-Scott South Pole Station, in Antarctica

Intensive research

Neutrinos are tiny, near-massless particles created by “cosmic accelerators”. These are violent astrophysical sources such as exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. Neutrinos aren’t rare: our sun creates 65 billion neutrinos every second for every square centimetre of Earth, but neutrinos from outside the solar system are extremely hard to detect; partly because they are so incredibly small, but also because we are swamped with billions upon billions from inside our own solar system.

The IceCube telescope has found 28 needles in this metaphorical haystack, 28 neutrinos that scientists are convinced are from outside our solar system.

The hot water drill manages to bore deep holes through the Antarctic ice (© NSF)

The hot water drill manages to bore deep holes through the Antarctic ice

Sadly the IceCube can’t tell us exactly where the neutrinos are from. According to Science magazine: “the origin of this flux is unknown, the findings are consistent with expectations for a neutrino population with origins outside the solar system.”

The IceCube telescope was designed for this very purpose. It is a unique structure consisting of 86 strings drilled deep into the Antarctic ice. Attached to these strings are 5,160 digital optical modules, which are embedded between 1.4 and 2.4km below the Antarctic ice.

"IceCube is a wonderful and unique astrophysical telescope.” said Vladimir Papitashvili, Antarctic astrophysics and geospace science programme director with the National Science Foundation. “It is deployed deep in the Antarctic ice, but looks over the entire universe."

The IceCube telescope consists of 86 arrays dug almost two and a half kilometres into the ice (© Nasa-verve - Wikipedia)

The IceCube telescope consists of 86 arrays dug almost two and a half kilometres into the ice

How it works

Neutrinos carry information about the workings of the most distant phenomena in the universe. But it’s hard to catch neutrinos because they are near massless, and carry no electrical charge. Neutrinos are not affected by electromagnetic forces, and pass straight through matter (they fly straight through the Earth).

They do, however, causes tiny flashes of blue light, called Cherenkov light, when they interact with the ice. It is these tiny blue flashes deep beneath the South Pole that IceCube has been built to monitor.

A Digital Optical Module being attached to the final string just before the detector array was switched online (© Peter Rejcek - NSF)

A Digital Optical Module being attached to the final string just before the detector array was switched online

Rather than looking into the sky, the IceCube monitor has over five thousand Digital Optical Modules (DOMs). Each one has a photomultiplier tube (PMT) and a data acquisition computer. A PMT is a vacuum tube that is extremely sensitive to light in the ultraviolet, visible and near-infrared range. It can multiply the current produced by such light by as much as 100 million times.

Digital Optical Modules are suspended on strings in holes melted into the ice using a hot water drill, at depths ranging from 1,450 to 2,450 metres (© Amble - Wikipedia)

Digital Optical Modules are suspended on strings in holes melted into the ice using a hot water drill, at depths ranging from 1,450 to 2,450 metres

Breaking the ice

These DOMs are attached to 86 different strings that have been buried deep beneath the ice. Scientists used a hot water drill to bore holes with depths ranging from 1,450 to 2,450 metres and suspended the DOMs on the strings beneath the ice. The photomultiplier tube inside the DOM scans for the Cherenkov effect, and the on-board computer sends any data back to the surface.

According to the National Science Foundation the observation of 28 very high-energy particle events constitutes the first solid evidence for astrophysical neutrinos from cosmic accelerators.

"This is the first indication of high-energy neutrinos coming from outside our solar system," says Francis Halzen, principal investigator of IceCube and the Hilldale and Gregory Breit Distinguished Professor of Physics at the University of Wisconsin-Madison. "It is gratifying to finally see what we have been looking for. This is the dawn of a new age of astronomy."

You might also like:
Could solar panels on the moon solve the world’s energy crisis?
Europe's amazing new satellite navigation system
London to New York in 1 hour at Mach 6?

Who will win the space race to land on Mars?
What happens when metal runs out?
The amazing Nasa high-altitude spyplane
Space race: who will take you there?
Can technology save us from the storms?
On Bing: find out more about the planets

13Comments
Report
Please help us to maintain a healthy and vibrant community by reporting any illegal or inappropriate behavior. If you believe a message violates theCode of Conductplease use this form to notify the moderators. They will investigate your report and take appropriate action. If necessary, they report all illegal activity to the proper authorities.
Categories
100 character limit
Are you sure you want to delete this comment?

the ultimate urban experience

more on msn innovation